

SLQ10WAZ

Features

•Outline Dimension

(Ta=25°C)

Unit

mA

mA

V

mW

°C

°C

Value

1,400

2.000

15

17,640

-30 ~ +85

-40~+100

260°**C**/5sec

 $(Ta=25^{\circ}C)$

- High-power LED
- Long lifetime operation
- Typical viewing angle : 140deg
- **RoHS** compliant •
- Possible to attach to heat sink directly without using print circuit board.
- **Applications**
- Indoor & outdoor lighting
- Stage lighting
- Reading lamps
- Display cases, furniture illumination, marker
- Architectural illumination

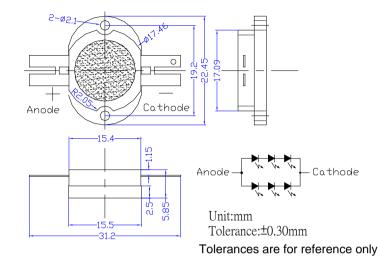
DC Forward Current *1

Pulse Forward Current*2

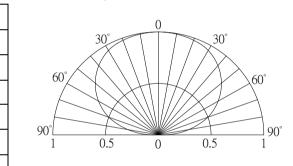
Reverse Voltage

Power Dissipation*1

Operating Temperature


Lead Soldering Temperature

Storage Temperature


Spotlights

■Absolute Maximum Rating

Item

Directivity

Tsol *1, Power dissipation and forward current are the value when the module temperature is

Symbol

 $I_{\rm F}$

I_{FP}

V_R

 P_{D}

Topr

Tstg

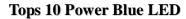
set lower than the rating by using an adequate heat sink.

*2, Pulse width Max.10ms Duty ratio max 1/10

Electrical -Optical Characteristics

================		(10-25 0)				
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
DC Forward Voltage	$V_{\rm F}$	I _F =1000mA	9.6	11.0	12.6	V
DC Reverse Current	I _R	V _R =15V	-	-	20	μA
Luminous Flux	Φv	I _F =1000mA	150	180	-	lm
Domi. Wavelength	λ_{D}	I _F =1000mA	455	460	465	nm
50% Power Angle	2 0 1/2	I _F =1000mA	-	140	-	deg

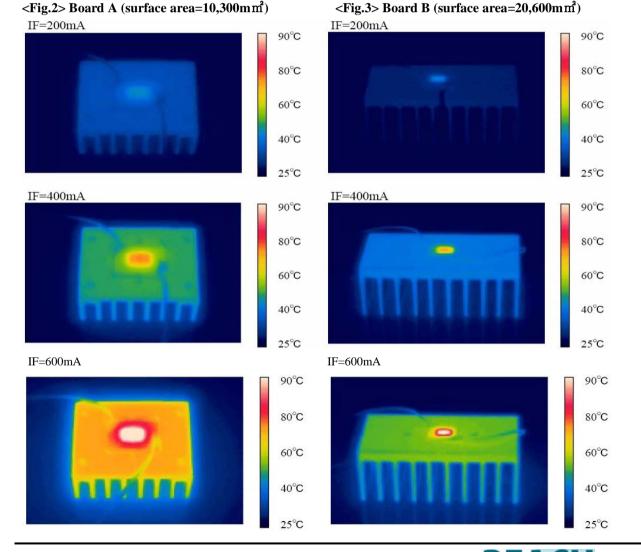
Note: Don't drive at rated current more than 5s without heat sink for High Power series.


* Tolerance of chromaticity coordinates is $\pm 10\%$, * Tolerance of Luminous Flux is $\pm 20\%$

SLQ10WAZ

■Heat design

The following pictures show some measurements of mounted 5W Led on the heat sink for each board A and B (See Fig 1) with using thermograph to make an observation about heat distribution. Each boards is tested at various current conditions.


As a result, LED needs larger heat sink as much as possible to reduce its own case temperature.

Board	LED power	Material	Surface area (mm²) Min.
А	5W	Al	10,300
В	10W	Al	20,600
С	25W	Al	51,500
D	50W	Al	103,000
Е	100W	Al	206,000
F	200W	Al	412,000
G	300W	Al	618,000

Fig. 1 Configuration pattern examples for board assembly

Above tested LED device is attached with adhesive sheet to the heatsink.

For reference's sake, Tj absolute maximum rating is defined at 115°C as a prerequisite on design process of 5W LED.

LED & Application Technologies

